The Role of the Detector

NAB Broadcast Engineering Conference 2008

David Maxson

Overview

- Measuring IBOC Signals
 - Spectrum Occupancy
 - Quality of Service
- Measurement Objectives
 - Accuracy
 - Repeatability

Overview

- Covered in this Presentation
 - Regulation & Standards
 - FCC Rules still in flux
 - NRSC-5-B just adopted
 - Measuring
 - Spectrum Analyzer
 - Application Specific Device
 - Measurement Techniques
 - Signal Acquisition
 - Detection
 - Measurement

Digital Audio Broadcasting Systems and Their Impact on the Terrestrial Radio Broadcast Service,

□ First Report and Order, FCC 02-286, 17 FCC Rcd 19990, released October 11, 2002.

E.41 Interim IBOC Operations

□ As of the release of this *Report and Order*, stations may request authority to operate on an interim basis with the hybrid IBOC facilities described in Appendices B and C herein.

[1] See Appendix B, FM IBOC Specification; see also Appendix C, AM IBOC Specification.

Nominal Hybrid Carrier Power Spectral Density

- 2nd Report and Order, May 2007
- III.9.102 Other Technical Issues
- In the *DAB FNPRM*, we raised for comment other technical issues relevant to the discussion of DAB operations, including (1) AM and FM definitional issues; (2) interference; (3) AM stereo; (4) operating power; and (5) predicted coverage for digital signals.[1] We find that these issues have been sufficiently addressed in the *DAB R&O* to permit station authorization on an interim basis. Further evaluation of these issues is best undertaken in conjunction with the NRSC-5 standards review.

[1] See 19 FCC Rcd at 7521-26.

• FM

• "For hybrid systems, measurements of the combined analog and digital signals shall be made by averaging the power spectral density of the signal in a 1 kHz bandwidth over a 30-second segment of time."

NRSC-5-A Standard, Reference Document #6, *Doc. No. SY_SSS_1026s rev. D, HD Radio*TM *FM Transmission System Specifications, iBiquity Digital Corporation,* 2/18/05

• FM

• "For hybrid systems, measurements of the combined analog and digital signals shall be made by averaging the power spectral density of the signal in a 1 kHz bandwidth over a 30-second segment of time and a minimum of 100 sweeps."

NRSC-5-B Standard, Reference Document #6, *Doc. No. SY_SSS_1026s rev. E*, *HD Radio*TM *FM Transmission System Specifications, iBiquity Digital Corporation,* 6/16/06

Figure 9. NRSC-5 AM hybrid waveform spectral emissions limits for 5 kHz analog bandwith

• AM

• "For hybrid systems, measurements of the combined analog and digital signals shall be made by averaging the power spectral density of the signal in a 300 Hz bandwidth over a 30-second segment of time."

NRSC-5 Standard, Reference Document #6, *Doc. No. SY_SSS_1026s rev. D, HD Radio*TM *FM Transmission System Specifications, iBiquity Digital Corporation,* 2/18/05

• AM

• "For hybrid systems, measurements of the combined analog and digital signals shall be made by averaging the power spectral density of the signal in a 300 Hz bandwidth over a 30-second segment of time and a minimum of 100 sweeps."

NRSC-5-B Standard, Reference Document #6, *Doc. No. SY_SSS_1026s rev. E*, *HD Radio*TM *FM Transmission System Specifications, iBiquity Digital Corporation,* 6/16/06

- Current Hybrid Masks
 - Presumed applicable
 - Basic measurement method described
 - Averaging
 - 30 seconds
 - 100 sweeps
 - Specified PSD bandwidths

NRSC Action

- Accepted iBiquity wording in the NRSC-5-B reference documents
- Separate guideline document for measurement locations and methods
 - In process
- Other NRSC Guidelines
- NRSC-G100: Bandwidth Options for Analog AM Broadcasters (September 2007)
- NRSC-G200: Harmonization of RDS and IBOC Program Service Data (PSD)
 Guideline (September 2007)

Swept Analyzer Basics

- Local oscillator and IF filter
 - Sweep across a spectrum
 - Like manually tuning a filter
 - up frequency
 - very quickly
- As it sweeps, data are collected in frequency "buckets"

Broadcast Signal Lab

RFSigns.com

Broadcast Signal Lab

RFSigns.com

FFT Analyzer Basics

- No swept local oscillator
- Anti-alias filtering
 - Keeps out-of-spectrum energy from digitally folding over to the band of interest
- Number of data points (in time domain) transforms to frequency resolution (in frequency domain)
- After FFT transformation, the data points are frequency "bins"
 - FFT bins are comparable to swept buckets

Broadcast Signal Lab

RFSigns.com

FFT Analyzer Basics

FFT vs Swept

- ◆ FFT uses a *window* instead of *RBW* filter
 - Sharp filtering possible in the digital domain
- Swept analyzer RBW filters have physical properties
 - Wider skirts
- Shape Factor and Noise bandwidth

Measuring

- Y_{Averaging}
- ◆ 30 seconds
- ◆ 100 sweeps
- Specified PSD bandwidths ?

RFSigns.com

Averaging

- Power within the envelope of the waveform
 - 0.707 times the peak- sinusoidal

Measuring

- Power within the envelope of the waveform
 - Amplitude modulation changes the peak/average ratio

NDERSTANDING HD RADIO" TECHNOLOGY

David P. Maxson

RFSigns.com

Averaging

OFDM is not sinusoidal

Nine Harmonically-Related Sine-Waves (common peak at start)

Nine Harmonically-Related Sine-Waves (common zero-crossing at start)

Bold trace is the sum of nine traces of equal amplitude

Nine Harmonically-Related Sine-Waves (some randomly shifted 180 degrees)

Bold trace is the sum of nine traces of equal amplitude

Peak Detection

- Traditional detection modes
 - Peak Detector reports the power level assuming it is seeing a sinusoid
 - \bullet = 0.707 x peak voltage
 - Instantaneous measurement
 - Represents the average power of the sinusoid during the bucket time
 - Overstates the average power of a modulated waveform in the bucket time

Peak Detection

- Traditional detection modes
 - Peak (max)
 - Pit (min)
 - Sample

Modulated Waveform Envelope

Peak Detection

- Traditional detection modes
 - Sinusoid envelope
 - Peak Pit & Sample Frequency Bucket

Peak vs Sample Detection

- Traditional detection modes
 - Peak Detector not reliable power indicator for complex waveforms
 - Sample detector OK
 - Have to average numerous traces
 - Provides a series of single random samples to average
 - Trace averaging has implications

Sample Detection

- Sample Detection of a white noise-like waveform
 - Each sample is detected and presented as if it were the sinusoidal power (the 0.707 factor)
 - The noise waveform power is understated by averaging a series of sample-detected traces
 - The average of the logs is not the log of the average
 - 2.51 dB understatement of power
 - Experimentally, IBOC OFDM reads 2.46 dB low with sample detector and log trace averaging
 - Assumes reference level is set without same error (CW-like analog waveform)

State of the Art "Detection"

- Digital analyzers with computed detection
 - RMS, a.k.a Average: Power
 - Average, a.k.a Average: Voltage
 Frequency Bucket

• Multiple samples per bucket

State of the Art "Detection"

- Digital Analyzers have different implementations
 - Some trace averages employ the raw data
 - Accurately report power with no offset
 - Some trace averages store the computed trace data and impose the average-of-the-logs offset.
- Talk to someone who really knows the insides of your analyzer

State of the Art "Detection"

- Some digital analyzers are FFT analyzers with a swept analyzer user interface.
 - Of no consequence to the user
 - Other than providing good power computation capability

- Averaging
- ◆ 30 seconds
- **◆** 100 sweeps
- Specified PSD bandwidths

- Physical filters
 - Wider shape factor, higher noise BW
 - 4-pole synchronously tuned filters
 - ◆0.52 dB overstatement of power on noiselike waveform
- Digital filters
 - If ideally shaped Gaussian, only hundredths of a dB overstatement

- Older spectrum analyzer
 - ◆ 4-pole filter
 - Sample detector
 - Trace averaging
- 2.51 0.52 = 1.99 dB
 understatement of power
 - Assumes reference level set without same error

• Filter slope is critical in hybrid AM

measurements

4-pole vs Gaussian filter slopes

• 300 Hz "RBW"

- 4-pole and Gaussian filters swept across OFDM cliff
 - ◆ Red and Blue
- AM IBOC Mask
 - Green

- Averaging
- ◆ 30 seconds
- **◆** 100 sweeps
- Specified PSD bandwidths

- Maximum sweep rate
 - Typically ½(RBW squared)
 - 1 kHz RBW
 - sweeps ½ MHz per second, max rate
 - About 1.2 seconds to cover a 600 kHz span
 - Only 25 sweeps in 30 seconds!!!
 - 2 minutes for 100 sweeps

- More detailed interpretation needed
 - Are AM and FM IBOC masks based on 4-pole, sample detected, trace averaged measurements?
 - NRSC Guideline is expected to clarify

- More detailed interpretation needed
 - What if an equipment manufacturer has an innovative way to assure compliance?
 - Tractable specification might coexist with the operational specification
 - Might be stated in a way that lets instruments evolve without sticking to 4-pole filters, swept analyzer & one specified RBW.

Acknowledgements

- NRSC ISDWG members, plus
- Bert Weiner
- David Gates, Cesium Communications
- Steve Cantrell, Anritsu
- And especially Joe Gorin, Agilent
 - For mathematical support and detector insights

Thank You

Presentation will be available for download in the digital radio section at:

www.broadcastsignallab.com